Data Science

Master the art and science of extracting insights from data.

Module 1: Introduction to Data Science

  • What is Data Science?
  • Data Science Workflow
  • Applications of Data Science
  • Roles and Responsibilities of a Data Scientist

Module 2: Data Science Foundations

  • Descriptive Statistics: Mean, Median, Mode, Variance, Standard Deviation
  • Inferential Statistics: Hypothesis Testing, Confidence Intervals
  • Probability Distributions: Normal, Binomial, Poisson
  • Linear Algebra: Matrices, Vectors, Eigenvalues
  • Calculus for Optimization: Gradients and Derivatives

Module 3: Python for Data Science

  • Python Basics: Data Types, Control Structures, Functions
  • Python Libraries: NumPy, Pandas, Matplotlib, Seaborn
  • Data Manipulation with Pandas
  • Data Visualization Techniques
  • Hands-On Data Analysis

Module 4: Data Wrangling and Preprocessing

  • Handling Missing Data
  • Data Cleaning Techniques
  • Feature Engineering and Feature Scaling
  • Encoding Categorical Variables
  • Outlier Detection and Treatment

Module 5: Exploratory Data Analysis (EDA)

  • Understanding Data Distributions
  • Correlation Analysis
  • Univariate, Bivariate, and Multivariate Analysis
  • Advanced Visualization Techniques
  • Hands-On EDA Project

Module 6: Machine Learning Basics

  • Supervised Learning: Classification and Regression
  • Algorithms: Linear Regression, Logistic Regression, Decision Trees
  • Unsupervised Learning: Clustering and Dimensionality Reduction
  • Algorithms: K-Means, DBSCAN, PCA
  • Model Evaluation Metrics

Module 7: Advanced Machine Learning

  • Ensemble Techniques: Random Forest, Gradient Boosting, XGBoost
  • Hyperparameter Tuning: Grid Search, Random Search
  • Cross-Validation Techniques
  • Model Deployment Basics

Module 8: Introduction to Big Data and SQL

  • Overview of Big Data Technologies: Hadoop, Spark
  • SQL for Data Analysis
  • Writing Queries, Joins, Grouping, Aggregations
  • Integrating SQL with Python

Module 9: Introduction to Deep Learning

  • Basics of Neural Networks
  • Introduction to TensorFlow and Keras
  • Building a Simple Neural Network
  • Hands-On Project: Image Classification or Text Analysis

Module 10: Data Science Project and Deployment

  • End-to-End Data Science Project Workflow
  • Insights and Reporting
  • Deploying Models Using Flask or FastAPI

Module 11: Capstone Project and Review

  • Real-World Data Science Capstone Project
  • Dataset Exploration
  • EDA and Feature Engineering
  • Model Building and Optimization
  • Insights and Presentation

Enroll Now